Team
Unser Aushängeschild: ein exzellentes Team.
Dr. Marc Hesenius
Betreute Veranstaltungen & Seminare
Veröffentlichungen
2022
Schönewolf, Jule; Meyer, Ole; Engels, Paula; Schlickenrieder, Anne; Hickel, Reinhard; Gruhn, Volker; Hesenius, Marc; Kühnisch, Jan
In: Clinical Oral Investigations, 2022.
@article{Schoenwolf:2022:MIHDetection,
title = {Artificial intelligence-based diagnostics of molar-incisor-hypomineralization (MIH) on intraoral photographs},
author = {Jule Schönewolf and Ole Meyer and Paula Engels and Anne Schlickenrieder and Reinhard Hickel and Volker Gruhn and Marc Hesenius and Jan Kühnisch},
doi = {10.1007/s00784-022-04552-4},
year = {2022},
date = {2022-05-24},
urldate = {2022-01-01},
journal = {Clinical Oral Investigations},
abstract = {The aim of this study was to develop and validate a deep learning--based convolutional neural network (CNN) for the automated detection and categorization of teeth affected by molar-incisor-hypomineralization (MIH) on intraoral photographs.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Engels, Paula; Meyer, Ole; Schönewolf, Jule; Schlickenrieder, Anne; Hickel, Reinhard; Hesenius, Marc; Gruhn, Volker; Kühnisch, Jan
In: Journal of Dentistry, Bd. 121, S. 104124, 2022, ISSN: 0300-5712.
@article{Engels:2022:PosteriorRestorationsAI,
title = {Automated detection of posterior restorations in permanent teeth using artificial intelligence on intraoral photographs},
author = {Paula Engels and Ole Meyer and Jule Schönewolf and Anne Schlickenrieder and Reinhard Hickel and Marc Hesenius and Volker Gruhn and Jan Kühnisch},
url = {https://www.sciencedirect.com/science/article/pii/S0300571222001737},
doi = {https://doi.org/10.1016/j.jdent.2022.104124},
issn = {0300-5712},
year = {2022},
date = {2022-04-05},
urldate = {2022-01-02},
journal = {Journal of Dentistry},
volume = {121},
pages = {104124},
abstract = {Objectives
Intraoral photographs might be considered the machine-readable equivalent of a clinical-based visual examination and can potentially be used to detect and categorize dental restorations. The first objective of this study was to develop a deep learning-based convolutional neural network (CNN) for automated detection and categorization of posterior composite, cement, amalgam, gold and ceramic restorations on clinical photographs. Second, this study aimed to determine the diagnostic accuracy for the developed CNN (test method) compared to that of an expert evaluation (reference standard).
Methods The whole image set of 1761 images (483 of unrestored teeth, 570 of composite restorations, 213 of cements, 278 of amalgam restorations, 125 of gold restorations and 92 of ceramic restorations) was divided into a training set (N = 1407, 401, 447, 66, 231, 93, and 169, respectively) and a test set (N = 354, 82, 123, 26, 47, 32, and 44). The expert diagnoses served as a reference standard for cyclic training and repeated evaluation of the CNN (ResNeXt-101--32 × 8d), which was trained by using image augmentation and transfer learning. Statistical analysis included the calculation of contingency tables, areas under the receiver operating characteristic curve and saliency maps.
Results
After training was complete, the CNN was able to categorize restorations correctly with the following diagnostic accuracy values: 94.9% for unrestored teeth, 92.9% for composites, 98.3% for cements, 99.2% for amalgam restorations, 99.4% for gold restorations and 97.8% for ceramic restorations.
Conclusions
It was possible to categorize different types of posterior restorations on intraoral photographs automatically with a good diagnostic accuracy.
Clinical significance
Dental diagnostics might be supported by artificial intelligence-based algorithms in the future. However, further improvements are needed to increase accuracy and practicability.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Intraoral photographs might be considered the machine-readable equivalent of a clinical-based visual examination and can potentially be used to detect and categorize dental restorations. The first objective of this study was to develop a deep learning-based convolutional neural network (CNN) for automated detection and categorization of posterior composite, cement, amalgam, gold and ceramic restorations on clinical photographs. Second, this study aimed to determine the diagnostic accuracy for the developed CNN (test method) compared to that of an expert evaluation (reference standard).
Methods The whole image set of 1761 images (483 of unrestored teeth, 570 of composite restorations, 213 of cements, 278 of amalgam restorations, 125 of gold restorations and 92 of ceramic restorations) was divided into a training set (N = 1407, 401, 447, 66, 231, 93, and 169, respectively) and a test set (N = 354, 82, 123, 26, 47, 32, and 44). The expert diagnoses served as a reference standard for cyclic training and repeated evaluation of the CNN (ResNeXt-101--32 × 8d), which was trained by using image augmentation and transfer learning. Statistical analysis included the calculation of contingency tables, areas under the receiver operating characteristic curve and saliency maps.
Results
After training was complete, the CNN was able to categorize restorations correctly with the following diagnostic accuracy values: 94.9% for unrestored teeth, 92.9% for composites, 98.3% for cements, 99.2% for amalgam restorations, 99.4% for gold restorations and 97.8% for ceramic restorations.
Conclusions
It was possible to categorize different types of posterior restorations on intraoral photographs automatically with a good diagnostic accuracy.
Clinical significance
Dental diagnostics might be supported by artificial intelligence-based algorithms in the future. However, further improvements are needed to increase accuracy and practicability.
Kühnisch, Jan; Meyer, Ole; Hesenius, Marc; Gruhn, Volker
Caries Detection on Intraoral Images Using Artificial Intelligence Artikel
In: Journal of Dental Research, Bd. 101, Nr. 2, S. 158-165, 2022.
@article{Kühnisch2022,
title = {Caries Detection on Intraoral Images Using Artificial Intelligence},
author = {Jan Kühnisch and Ole Meyer and Marc Hesenius and Volker Gruhn},
url = {https://doi.org/10.1177/00220345211032524},
doi = {10.1177/00220345211032524},
year = {2022},
date = {2022-01-02},
urldate = {2022-01-01},
journal = {Journal of Dental Research},
volume = {101},
number = {2},
pages = {158-165},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Kühnisch, Jan; Hesenius, Marc; Meyer, Ole
Automatisierte Erkennung von Molaren-Inzisiven- Hypomineralisationen (MIH) mithilfe künstlicher Intelligenz Artikel
In: Quintessenz Zahnmedizin, Bd. 73, Nr. 12, S. 1094-1096, 2022.
@article{Kuehnisch:2022:AutomatMIH,
title = {Automatisierte Erkennung von Molaren-Inzisiven- Hypomineralisationen (MIH) mithilfe künstlicher Intelligenz},
author = {Jan Kühnisch and Marc Hesenius and Ole Meyer},
year = {2022},
date = {2022-01-01},
journal = {Quintessenz Zahnmedizin},
volume = {73},
number = {12},
pages = {1094-1096},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Klumpp, Matthias; Severin, Benedikt; Lechte, Hendrik; Menck, Jannes; Keil, Maria; Straub, Sarah; Ruiner, Caroline; Milke, Viola; Hagemann, Vera; Hesenius, Marc
Driving Big Data --- Integration and Synchronization of Data Sources for Artificial Intelligence Applications with the Example of Truck Driver Work Stress and Strain Analysis Proceedings Article
In: International Conference on Information Systems (ICIS) 2022 Proceedings, 2022.
@inproceedings{Klumpp:2022:DrivingBigData,
title = {Driving Big Data --- Integration and Synchronization of Data Sources for Artificial Intelligence Applications with the Example of Truck Driver Work Stress and Strain Analysis},
author = {Matthias Klumpp and Benedikt Severin and Hendrik Lechte and Jannes Menck and Maria Keil and Sarah Straub and Caroline Ruiner and Viola Milke and Vera Hagemann and Marc Hesenius},
url = {https://aisel.aisnet.org/icis2022/data_analytics/data_analytics/3/},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {International Conference on Information Systems (ICIS) 2022 Proceedings},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Hermann, Julia; Plückthun, Moritz; Dogangün, Aysegül; Hesenius, Marc
User-Defined Gesture and Voice Control in Human-Drone Interaction for Police Operations Proceedings Article
In: Nordic Human-Computer Interaction Conference, Association for Computing Machinery, Aarhus, Denmark, 2022, ISBN: 9781450396998.
@inproceedings{Hermann:2022:PoliceDrones,
title = {User-Defined Gesture and Voice Control in Human-Drone Interaction for Police Operations},
author = {Julia Hermann and Moritz Plückthun and Aysegül Dogangün and Marc Hesenius},
url = {https://doi.org/10.1145/3546155.3546661},
doi = {10.1145/3546155.3546661},
isbn = {9781450396998},
year = {2022},
date = {2022-01-01},
booktitle = {Nordic Human-Computer Interaction Conference},
publisher = {Association for Computing Machinery},
address = {Aarhus, Denmark},
series = {NordiCHI '22},
abstract = {Gesture and voice control are increasingly being used in everyday applications, such as tablets and smartphones, but also for controlling smart home systems or even drones. While several studies exist on how users interact with and issue commands to drones, studies using drones in very specific and highly specialized use cases are rare. In a user-centered approach with twelve German police officers, we examined how police forces would trigger drone functions through self-defined gestures and voice commands. For the study, we considered two deployment scenarios with a total of 21 functions that were developed together with the police. The focus here is on use in large crowds and the pursuit of suspects. We identify sets of custom gestures and possible voice commands.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Ruiner, Caroline; Debbing, Christina; Hagemann, Vera; Schaper, Martina; Klumpp, Matthias; Hesenius, Marc
Job demands and resources when using technologies at work -- development of a digital work typology Artikel
In: Employee Relations: The International Journal, Bd. ahead-of-print, Nr. ahead-of-print, 2022, ISBN: 0142-5455.
@article{Ruiner:2022:HCITypology,
title = {Job demands and resources when using technologies at work -- development of a digital work typology},
author = {Caroline Ruiner and Christina Debbing and Vera Hagemann and Martina Schaper and Matthias Klumpp and Marc Hesenius},
url = {https://doi.org/10.1108/ER-11-2021-0468},
doi = {10.1108/ER-11-2021-0468},
isbn = {0142-5455},
year = {2022},
date = {2022-01-01},
journal = {Employee Relations: The International Journal},
volume = {ahead-of-print},
number = {ahead-of-print},
publisher = {Emerald Publishing Limited},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Klumpp, Matthias; Hesenius, Marc; Hanke, Thomas; Jäger, Stefanie
Augmentierte Realität und 5G für die Verkehrserziehung Buchkapitel
In: Proff, Heike (Hrsg.): Transforming Mobility -- What Next? Technische und betriebswirtschaftliche Aspekte, S. 659–669, Springer Fachmedien Wiesbaden, Wiesbaden, 2022, ISBN: 978-3-658-36430-4.
@inbook{Klumpp:2022:AR5GVerkehrserziehung,
title = {Augmentierte Realität und 5G für die Verkehrserziehung},
author = {Matthias Klumpp and Marc Hesenius and Thomas Hanke and Stefanie Jäger},
editor = {Heike Proff},
url = {https://doi.org/10.1007/978-3-658-36430-4_38},
doi = {10.1007/978-3-658-36430-4_38},
isbn = {978-3-658-36430-4},
year = {2022},
date = {2022-01-01},
booktitle = {Transforming Mobility -- What Next? Technische und betriebswirtschaftliche Aspekte},
pages = {659--669},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
2021
Hagemann, Vera; Meinecke, Jonathan; Schaper, Martina; Debbing, Christina; Ruiner, Caroline; Klumpp, Matthias; Hesenius, Marc
Mental Stress and Strain Assessment in Digital Work Artikel
In: Zeitschrift für Arbeits- und Organisationspsychologie A&O, 2021.
@article{Hagemann:2021:MESTAT,
title = {Mental Stress and Strain Assessment in Digital Work},
author = {Vera Hagemann and Jonathan Meinecke and Martina Schaper and Christina Debbing and Caroline Ruiner and Matthias Klumpp and Marc Hesenius},
doi = {10.1026/0932-4089/a000387},
year = {2021},
date = {2021-01-01},
journal = {Zeitschrift für Arbeits- und Organisationspsychologie A&O},
abstract = { Abstract. When digitalizing work, organizations face the challenge of analyzing, evaluating, and mitigating a potential increase in mental workload for employees and managers. This paper presents an instrument to assess mental stress and strain in digital work contexts and the related development process and validation. Based on a literature and instrument review and an interview study, we developed an assessment instrument and validated it in two coordinated studies (N = 245},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Gruhn, Volker; Han, Yanbo; Hesenius, Marc; Reichert, Manfred; Wang, Guiling; Yu, Jian; Zhang, Liang
BRIBOT: Towards a Service-Based Methodology for Bridging Business Processes and IoT Big Data Proceedings Article
In: Hacid, Hakim; Kao, Odej; Mecella, Massimo; Moha, Naouel; Paik, Hye-young (Hrsg.): Service-Oriented Computing, S. 597–611, Springer International Publishing, Cham, 2021, ISBN: 978-3-030-91431-8.
@inproceedings{10.1007/978-3-030-91431-8_37,
title = {BRIBOT: Towards a Service-Based Methodology for Bridging Business Processes and IoT Big Data},
author = {Volker Gruhn and Yanbo Han and Marc Hesenius and Manfred Reichert and Guiling Wang and Jian Yu and Liang Zhang},
editor = {Hakim Hacid and Odej Kao and Massimo Mecella and Naouel Moha and Hye-young Paik},
isbn = {978-3-030-91431-8},
year = {2021},
date = {2021-01-01},
booktitle = {Service-Oriented Computing},
pages = {597--611},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {We envisage that BPM and IoT Big Data will be the two pillars of next-generation Process-Aware Information Systems (PAIS). While IoT enables BPM to perceive and react to realtime events in the physical world, BPM can equip IoT with a well-developed modelling and implementation platform. However, the integration of BPM and IoT is facing paradigm misalignment challenges including mismatch of programming mechanisms, mismatch of resource management mechanisms, and mismatch of adaptation mechanisms. In this paper, we present the vision and architectural solution of the recently funded NSFC-DFG cooperation research project BRIBOT, which aims to develop novel service-based approaches and techniques for these challenges. The paper presents the BRIBOT methodology that comprises four parts: abstraction and servitization of IoT data, resource space that handles service and data assets, modelling and transformation of IoT and business events, and IoT-event-driven process awareness and adaptation.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Börsting, Ingo; Hesenius, Marc
Towards a Systematic Approach for Chatbot Development in Digital Work Environments Buchkapitel
In: Klumpp, Matthias; Ruiner, Caroline (Hrsg.): Digital Supply Chains and the Human Factor, S. 79–94, Springer International Publishing, Cham, 2021, ISBN: 978-3-030-58430-6.
@inbook{Boersting:2021:TowardsSystematicChatbotDev,
title = {Towards a Systematic Approach for Chatbot Development in Digital Work Environments},
author = {Ingo Börsting and Marc Hesenius},
editor = {Matthias Klumpp and Caroline Ruiner},
url = {https://doi.org/10.1007/978-3-030-58430-6_5},
doi = {10.1007/978-3-030-58430-6_5},
isbn = {978-3-030-58430-6},
year = {2021},
date = {2021-01-01},
booktitle = {Digital Supply Chains and the Human Factor},
pages = {79--94},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {Chatbots allow to interact with machines in a natural language dialog. Especially in digital work environments, they offer potential for a more intuitive human-computer interaction and remove the need for artificial user interfaces, which users have to learn to operate. However, chatbots typically have to be configured with knowledge about the use case at hand, potential dialog paths, and user interactions, which means to explicitly define user input and chatbot response. The interplay between human and machine defines the perceived user experience. In this chapter, we describe our approach to develop dialogs for chatbot interaction. We use and adapt the Interaction Room Method for this purpose and introduce necessary elements to define required components, especially utterances, intents, and entities.},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
Klumpp, Matthias; Gruhn, Volker; Hesenius, Marc; Schwarz, Patrick
Connected Urban Mobility: Einsatz Künstlicher Intelligenz zur Koordination von Lastenrädern in der Last Mile Logistik Buchabschnitt
In: Proff, Heike (Hrsg.): Making Connected Mobility Work, S. 533-547, Springer, 2021.
@incollection{RePEc:spr:sprchp:978-3-658-32266-3_33,
title = {Connected Urban Mobility: Einsatz Künstlicher Intelligenz zur Koordination von Lastenrädern in der Last Mile Logistik},
author = {Matthias Klumpp and Volker Gruhn and Marc Hesenius and Patrick Schwarz},
editor = {Heike Proff},
url = {https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-658-32266-3_33},
year = {2021},
date = {2021-01-01},
booktitle = {Making Connected Mobility Work},
pages = {533-547},
publisher = {Springer},
abstract = {Zusammenfassung Die Logistikbranche in Deutschland wächst seit Jahren kontinuierlich. Mit ihr steigt auch die Anzahl der Sendungen und Auslieferungen durch Kurier-, Express- und Paketdienste (KEP-Dienste) (vgl. Muschkiet und Schückhaus 2019, S. 357). Auch für die nächsten Jahre ist ein Wachstum der Paketmengen prognostiziert (vgl. Statista 2019a, 2019b).},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Schlickenrieder, Anne; Meyer, Ole; Schönewolf, Jule; Engels, Paula; Hickel, Reinhard; Gruhn, Volker; Hesenius, Marc; Kühnisch, Jan
In: Diagnostics, Bd. 11, Nr. 9, 2021, ISSN: 2075-4418.
@article{diagnostics11091608,
title = {Automatized Detection and Categorization of Fissure Sealants from Intraoral Digital Photographs Using Artificial Intelligence},
author = {Anne Schlickenrieder and Ole Meyer and Jule Schönewolf and Paula Engels and Reinhard Hickel and Volker Gruhn and Marc Hesenius and Jan Kühnisch},
url = {https://www.mdpi.com/2075-4418/11/9/1608},
doi = {10.3390/diagnostics11091608},
issn = {2075-4418},
year = {2021},
date = {2021-01-01},
journal = {Diagnostics},
volume = {11},
number = {9},
abstract = {The aim of the present study was to investigate the diagnostic performance of a trained convolutional neural network (CNN) for detecting and categorizing fissure sealants from intraoral photographs using the expert standard as reference. An image set consisting of 2352 digital photographs from permanent posterior teeth (461 unsealed tooth surfaces/1891 sealed surfaces) was divided into a training set (n = 1881/364/1517) and a test set (n = 471/97/374). All the images were scored according to the following categories: unsealed molar, intact, sufficient and insufficient sealant. Expert diagnoses served as the reference standard for cyclic training and repeated evaluation of the CNN (ResNeXt-101-32x8d), which was trained by using image augmentation and transfer learning. A statistical analysis was performed, including the calculation of contingency tables and areas under the receiver operating characteristic curve (AUC). The results showed that the CNN accurately detected sealants in 98.7% of all the test images, corresponding to an AUC of 0.996. The diagnostic accuracy and AUC were 89.6% and 0.951, respectively, for intact sealant; 83.2% and 0.888, respectively, for sufficient sealant; 92.4 and 0.942, respectively, for insufficient sealant. On the basis of the documented results, it was concluded that good agreement with the reference standard could be achieved for automatized sealant detection by using artificial intelligence methods. Nevertheless, further research is necessary to improve the model performance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hesenius, Marc; Kleffmann, Markus; Gruhn, Volker
AugIR Meets GestureCards: A Digital Sketching Environment for Gesture-Based Applications Artikel
In: Interacting with Computers, 2021, ISSN: 1873-7951, (iwab017).
@article{10.1093/iwcomp/iwab017,
title = {AugIR Meets GestureCards: A Digital Sketching Environment for Gesture-Based Applications},
author = {Marc Hesenius and Markus Kleffmann and Volker Gruhn},
url = {https://academic.oup.com/iwc/advance-article/doi/10.1093/iwcomp/iwab017/6273339?guestAccessKey=d665bee3-137e-469e-a569-f328e9e2a77a},
doi = {10.1093/iwcomp/iwab017},
issn = {1873-7951},
year = {2021},
date = {2021-01-01},
journal = {Interacting with Computers},
abstract = {To gain a common understanding of an application's layouts, dialogs and interaction flows, development teams often sketch user interface (UI). Nowadays, they must also define multi-touch gestures, but tools for sketching UIs often lack support for custom gestures and typically just integrate a basic predefined gesture set, which might not suffice to specifically tailor the interaction to the desired use cases. Furthermore, sketching can be enhanced with digital means, but it remains unclear whether digital sketching is actually beneficial when designing gesture-based applications. We extended the AugIR, a digital sketching environment, with GestureCards, a hybrid gesture notation, to allow software engineers to define custom gestures when sketching UIs. We evaluated our approach in a user study contrasting digital and analog sketching of gesture-based UIs.},
note = {iwab017},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2020
Meyer, Ole; Hesenius, Marc; Gruhn, Volker
Using Concepts to Understand Intelligent Agents Proceedings Article
In: Martin, Andreas; Hinkelmann, Knut; Fill, Hans-Georg; Gerber, Aurona; Lenat, Dough; Stolle, Reinhard; van Harmelen, Frank (Hrsg.): Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice (AAAI-MAKE 2020) - Volume I, 2020.
@inproceedings{Meyer:2020:UnderstandingIntelligentAgents,
title = {Using Concepts to Understand Intelligent Agents},
author = {Ole Meyer and Marc Hesenius and Volker Gruhn},
editor = {Andreas Martin and Knut Hinkelmann and Hans-Georg Fill and Aurona Gerber and Dough Lenat and Reinhard Stolle and Frank van Harmelen},
url = {http://ceur-ws.org/Vol-2600/paper12.pdf},
year = {2020},
date = {2020-01-01},
booktitle = {Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice (AAAI-MAKE 2020) - Volume I},
number = {2600},
series = {CEUR Workshop Proceedings},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Ruiner, Caroline; Hagemann, Vera; Hesenius, Marc; Klumpp, Matthias
In: Bader, Verena; Kaiser, Stephan (Hrsg.): Arbeit in der Data Society: Zukunftsvisionen für Mitbestimmung und Personalmanagement, S. 243–261, Springer Fachmedien Wiesbaden, Wiesbaden, 2020, ISBN: 978-3-658-32276-2.
@inbook{Ruiner:2020:DigIdeenMgmt,
title = {Digitales Ideenmanagement als Mitbestimmung 4.0? Chancen und Herausforderungen der Partizipation von Mitarbeitenden in betrieblichen Veränderungsprozessen},
author = {Caroline Ruiner and Vera Hagemann and Marc Hesenius and Matthias Klumpp},
editor = {Verena Bader and Stephan Kaiser},
url = {https://doi.org/10.1007/978-3-658-32276-2_15},
doi = {10.1007/978-3-658-32276-2_15},
isbn = {978-3-658-32276-2},
year = {2020},
date = {2020-01-01},
booktitle = {Arbeit in der Data Society: Zukunftsvisionen für Mitbestimmung und Personalmanagement},
pages = {243--261},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
abstract = {Die Akzeptanz neuer Technologien im Arbeitsprozess wird durch die Teilhabe von Mitarbeitenden am Veränderungsprozess gefördert. Eine direkte Partizipation kann insbesondere über ein digitales Ideenmanagement ermöglicht werden, das bestehende Konzepte wie Kontinuierliche Verbesserungsprozesse oder Betriebliches Vorschlagswesen weiterentwickelt. Ziel dieses Beitrages ist es, eine innovative Organisation und Gestaltung des digitalen Ideenmanagements zur Förderung der Partizipation von Mitarbeitenden bei Veränderungsprozessen aufzuzeigen und die damit verbundenen Chancen und Herausforderungen zu diskutieren. Adressiert wird damit, wie digitale Technologien genutzt werden können, um neue Formen der Beteiligung und demokratische Arbeitsformen zu fördern. Im Ergebnis werden ein Prozessmodell des digitalen Ideenmanagements mit den handlungsrelevanten Elementen vorgestellt und die Chancen und Herausforderungen einer Implementierung in der betrieblichen Praxis kritisch diskutiert.},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
Schwenzfeier, Nils; Meyer, Ole; Hesenius, Marc
Building AI-Based Systems: Ein Bauplan für KI-Anwendungen Buchkapitel
In: Gruhn, Volker; Hayn, Andreas (Hrsg.): KI verändert die Spielregeln -- Geschäftsmodelle, Kundenbeziehungen und Produkte neu denken, S. 60–74, Hanser Fachbuch, 2020, ISBN: 978-3-446-46321-9.
@inbook{Schwenzfeier:2020:BuildingAIBasedSystems,
title = {Building AI-Based Systems: Ein Bauplan für KI-Anwendungen},
author = {Nils Schwenzfeier and Ole Meyer and Marc Hesenius},
editor = {Volker Gruhn and Andreas Hayn},
isbn = {978-3-446-46321-9},
year = {2020},
date = {2020-01-01},
booktitle = {KI verändert die Spielregeln -- Geschäftsmodelle, Kundenbeziehungen und Produkte neu denken},
pages = {60--74},
publisher = {Hanser Fachbuch},
abstract = {Kernelement zum Umgang mit neuen Arbeitswelten ist die Selbstwirksamkeitserwartung der Arbeitskräfte. Insbesondere bei Transport- und Kommissioniertätigkeiten in Produktion, Logistik und Handel kommen zunehmend individualisierte digitale Anwendungen zum Einsatz, die Elemente künstlicher Intelligenz beinhalten. Dazu stellt der Beitrag aus dem Projekt DIAMANT beispielhaft Unternehmensanforderungen in digitalen Veränderungsprozessen vor und entwirft ein E-Coaching-Konzept zur Unterstützung für Mitarbeitende und Führungskräfte. Dies basiert auf Elementen des maschinellen Lernens und der computergestützten Sprachverarbeitung. Ziel des Beitrages ist es, ein E-Coaching-Konzept für digitale Arbeitskontexte vorzustellen und im Hinblick auf Chancen und Herausforderungen einer digitalen Arbeitsgestaltung für Industrie-4.0-Konzepte zu diskutieren. Dazu werden Elemente spezifischer Bots beschrieben, die Mitarbeitende automatisiert zu Fragen des Umgangs mit digitalen Technologien zu unterstützen vermögen.},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
Wang, Guiling; Meng, Jinlong; Li, Zhuoran; Hesenius, Marc; Ding, Weilong; Han, Yanbo; Gruhn, Volker
Adaptive Extraction and Refinement of Marine Lanes from Crowdsourced Trajectory Data Artikel
In: Mobile Networks and Applications, 2020, ISBN: 1572-8153.
@article{cite-key,
title = {Adaptive Extraction and Refinement of Marine Lanes from Crowdsourced Trajectory Data},
author = {Guiling Wang and Jinlong Meng and Zhuoran Li and Marc Hesenius and Weilong Ding and Yanbo Han and Volker Gruhn},
url = {https://doi.org/10.1007/s11036-019-01454-w},
doi = {10.1007/s11036-019-01454-w},
isbn = {1572-8153},
year = {2020},
date = {2020-01-01},
journal = {Mobile Networks and Applications},
abstract = {Crowdsourced trajectory data of ships provide the opportunity for extracting marine lane information. However, extracting useful knowledge from massive amounts of trajectory data is a challenging problem. Trajectory data collected from crowdsourcing can be extremely diverse in different areas and its quality might be very low. Moreover, the density distribution of the crowdsourced trajectory points is quite uneven in different areas. Furthermore, it is necessary to extract marine lanes with high extraction precision in offshore and nearshore water areas, but extraction precision can be lower in the open sea. We propose an adaptive approach for marine lane extraction and refinement based on grid merging and filtering to meet the challenges. In this paper, after pre-processing and clustering the trajectory data based on the density value of grids with a parallel GeoHash encoding algorithm, we propose a parallel grid merging and filtering algorithm based on a QuadTree data structure. The algorithm performs grid merging on the simplified grid data according to the density value of grid, then filters the merged grid data based on a local sliding window mechanism to get the marine lane grid data. Applying the Delaunay Triangulation on the marine lane grid data, the marine lane boundary information can be extracted with adaptive extraction precision. Experimental results show that the proposed approach can extract marine lanes with high extraction precision in offshore and nearshore water area and low extraction precision in open sea area.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Klumpp, Matthias; Hesenius, Marc; Ruiner, Caroline; Hagemann, Vera
KI zur Unterstützung neuer Arbeitswelten in Produktion, Handel und Logistik Buchkapitel
In: Buchkremer, Rüdiger; Heupel, Thomas; Koch, Oliver (Hrsg.): Künstliche Intelligenz in Wirtschaft & Gesellschaft: Auswirkungen, Herausforderungen & Handlungsempfehlungen, S. 155–167, Springer Fachmedien Wiesbaden, Wiesbaden, 2020, ISBN: 978-3-658-29550-9.
@inbook{Klumpp:2020:KIinNeuenArbeitswelten,
title = {KI zur Unterstützung neuer Arbeitswelten in Produktion, Handel und Logistik},
author = {Matthias Klumpp and Marc Hesenius and Caroline Ruiner and Vera Hagemann},
editor = {Rüdiger Buchkremer and Thomas Heupel and Oliver Koch},
url = {https://doi.org/10.1007/978-3-658-29550-9_9},
doi = {10.1007/978-3-658-29550-9_9},
isbn = {978-3-658-29550-9},
year = {2020},
date = {2020-01-01},
booktitle = {Künstliche Intelligenz in Wirtschaft & Gesellschaft: Auswirkungen, Herausforderungen & Handlungsempfehlungen},
pages = {155--167},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
abstract = {Kernelement zum Umgang mit neuen Arbeitswelten ist die Selbstwirksamkeitserwartung der Arbeitskräfte. Insbesondere bei Transport- und Kommissioniertätigkeiten in Produktion, Logistik und Handel kommen zunehmend individualisierte digitale Anwendungen zum Einsatz, die Elemente künstlicher Intelligenz beinhalten. Dazu stellt der Beitrag aus dem Projekt DIAMANT beispielhaft Unternehmensanforderungen in digitalen Veränderungsprozessen vor und entwirft ein E-Coaching-Konzept zur Unterstützung für Mitarbeitende und Führungskräfte. Dies basiert auf Elementen des maschinellen Lernens und der computergestützten Sprachverarbeitung. Ziel des Beitrages ist es, ein E-Coaching-Konzept für digitale Arbeitskontexte vorzustellen und im Hinblick auf Chancen und Herausforderungen einer digitalen Arbeitsgestaltung für Industrie-4.0-Konzepte zu diskutieren. Dazu werden Elemente spezifischer Bots beschrieben, die Mitarbeitende automatisiert zu Fragen des Umgangs mit digitalen Technologien zu unterstützen vermögen.},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
2019
Gruhn, Volker; Hesenius, Marc; Meyer, Ole; Schwenzfeier, Nils
Von Daten, Rollen und Modellen – ein Bauplan für KI-Anwendungen Online
2019, besucht am: 18.11.2019.
@online{Gruhn2019,
title = {Von Daten, Rollen und Modellen – ein Bauplan für KI-Anwendungen},
author = {Volker Gruhn and Marc Hesenius and Ole Meyer and Nils Schwenzfeier},
url = {https://www.heise.de/developer/artikel/Von-Daten-Rollen-und-Modellen-ein-Bauplan-fuer-KI-Anwendungen-4586595.html},
year = {2019},
date = {2019-11-15},
urldate = {2019-11-18},
journal = {heise online},
abstract = {Wer klassische Softwareentwicklung beherrscht, muss nicht zwangsweise auch erfolgreich datengetriebene Anwendungen entwickeln können. Der Ansatz des Engineering Data-Driven Applications will den Prozess der Entwicklung von KI-Anwendungen strukturieren.},
keywords = {},
pubstate = {published},
tppubtype = {online}
}